Forum
Grundkurs
»Introduktion
»Snabbguide
»Komponenter
»Händelser
»Strängar
»Räkna med Delphi »Egna
typer
»Selektion
»Iteration
»Menyer
»Funktioner
»Arraystrukturer
Tips & Tricks
»Nya tips
»Blandat
»Databaser
»Filer
»Forms
»Grafik
»Internet
»Komponenter
»Matematik
»Multimedia
»Objekt/ActiveX
»Skrivare
»Strängar
»System
»Mest lästa tips
Artiklar
»Delphi och ADO
»Bygga en DLL
»Skapa en enkel rapport
»Hantera registret
»Enheter, units
»Klassen TCanvas
»Använd LookUp Controls
Nya
tips
Lägg
till tips
Delphilänkar
Gästbok
|
|
|
|
Trigonometri
|
Kategori: Matematik
Inlagt: 2004-06-13
Läst: 1516
Inlagt av: Staffan Berg
|
Beskrivning |
Trigonometriska och hyperboliska funktioner
|
Kod |
UNIT trighyp; INTERFACE FUNCTION TAN(x:Real):Real; FUNCTION COT(x:Real): Real; FUNCTION SEC(x:Real): Real; FUNCTION COSEC(x:Real): Real; FUNCTION SINH(x:Real): Real; FUNCTION COSH(x:Real): Real; FUNCTION TANH(x:Real): Real; FUNCTION COTH(x:Real): Real; FUNCTION SECH(x:Real): Real; FUNCTION COSECH(x:Real): Real; FUNCTION ARCSIN(x:Real):Real; FUNCTION ARCCOS(x:Real):Real; FUNCTION ARCCOT(x:Real): Real; FUNCTION ARCSEC(x:Real): Real; FUNCTION ARCCOSEC(x:Real): Real; FUNCTION ARCSINH(x:Real): Real; FUNCTION ARCCOSH(x:Real): Real; FUNCTION ARCTANH(x:Real): Real; FUNCTION ARCCOTH(x:Real): Real; IMPLEMENTATION FUNCTION TAN(x: Real): Real; //argument x is in radians BEGIN TAN := SIN(x)/COS(x); END; FUNCTION COT(x:Real): Real; //cotangent, x is in radians BEGIN COT := 1/TAN(x); END; FUNCTION SEC(x:Real): Real; //secant, x is in radians BEGIN SEC := 1/COS(x); END; FUNCTION COSEC(x:Real): Real; //cosecant, x is in radians BEGIN COSEC := 1/SIN(x); END; FUNCTION SINH(x:real):Real; //hyperbolic sin BEGIN SINH := (EXP(x)-EXP(-x))/2; END; FUNCTION COSH(x:Real): Real; //hyperbolic cos BEGIN COSH := (EXP(x)+EXP(-x))/2; END; FUNCTION TANH(x:Real): REAL; //hyperbolic tan BEGIN TANH := SINH(x)/COSH(x); END; FUNCTION COTH(x: Real): Real; //hyperbolic cotangent BEGIN COTH :=SINH(x)/COSH(x); END; FUNCTION SECH(x:Real): Real; //hyperbolic secant BEGIN SECH := 1/COSH(x); END; FUNCTION COSECH(x:Real): Real; //hyperbolic cosecant BEGIN COSECH := 1/SINH(x); END; FUNCTION ARCSIN(x:Real):Real; //inverse of sin, return value is in radians BEGIN IF ABS(x)=1.0 THEN ARCSIN := x*Pi/2 ELSE ARCSIN := ARCTAN(x/SQRT(-SQR(x)+1)); END; FUNCTION ARCCOS(x:Real):Real; //inverse of cos, return value is in radians BEGIN IF x = 1.0 THEN ARCCOS := 0 ELSE IF x = -1.0 THEN ARCCOS :=Pi ELSE ARCCOS := -ARCTAN(x/SQRT(-SQR(x)+1))+Pi/2; END; FUNCTION ARCCOT(x:Real): Real; //inverse of cot, return value is in radians BEGIN ARCCOT := ARCTAN(1/x); END; FUNCTION ARCSEC(x:Real): Real; inverse of secant, return value is in radians BEGIN ARCSEC := ARCCOS(1/x); END; FUNCTION ARCCOSEC(x:Real): Real; //inverse of cosecant, return value is in radians BEGIN ARCCOSEC := ARCSIN(1/x); END; FUNCTION ARCSINH(x:Real): Real; //inverse of hyperbolic sin BEGIN ARCSINH := LN(x + SQRT(x*x+1)); END; FUNCTION ARCCOSH(x:Real): Real; //inverse of hyperbolic cos BEGIN ARCCOSH := LN(x + SQRT(x*x-1)); END; FUNCTION ARCTANH(x:Real): Real; //inverse of hyperbolic tan BEGIN ARCTANH := LN((1+x)/(1-x))/2; END; FUNCTION ARCCOTH(x:Real): REAL; //inverse of hyperbolic cotangent BEGIN ARCCOTH := LN((x+1)/(x-1))/2; END; END.
|
|
|